Beam Hopping in DVB –S2X

DVB Webinar – 30 March 2020

• Nader Alagha – ESA ESTEC (European Space Research and Technology Centre)
• Avi Freedman – SatixFy
• Peter Nayler – EASii IC
Content

1. Context and requirements for beam hopping
2. Beam Hopping Definitions
3. Beam Hopping System Scenarios
4. General description of new Formats for Beam hopping
5. Simulation and Analysis
6. Maintenance, further work and closing remarks
1. Context and requirements for Beam-Hopping
DVB-S2 to S2X

- DVB-S2: March 2005, EN302307
- DVB-S2X: October 2014, EN… part 2
- Main improvements were
 - More MODCODs -> Higher dynamic range (VLSNR, 256APSK), smaller gaps between MODCODs
 - Time slicing (new header) -> manageable complexity
 - Lower roll off -> more efficient BW use
 - Scrambling -> Tighter beams (spot beams)
 - Channel bonding -> statistical mux
New requirements

• The S2X standard was all very well but:
 • The standard did not easily allow for dynamic reallocation of resources.
 • Satellite capacity tended to be fixed at launch
 • Satellite throughput limited by amplifiers and TWTs
 • Some areas (cells) required much more capacity than others.
 • More flexibility in throughput allocation was required.

Some cells require more capacity
New Technologies

• Satellite technology moved on.
 ▪ Ferrite switches, regenerative payloads, electronically steerable antennas…
 ▪ Bandwidth could now be allocated to each cell as a function of time.
• -> BEAM-HOPPING
 ▪ Studies showed that 20% improvement in unmet demand
• In order to exploit the potential the DVB-S2 standard had to be upgraded again.
DVB-CM-S and Beam-Hopping

- In October 2017 the CM agreed that CM-S should work on commercial requirements
 - amending the DVB-S2X specification to include optimisations for beam-hopping.
 - chairmanship of Thomas Wrede.
- In October 2018, the DVB-S-CM published a set of commercial requirements for Beam-Hopping (DVB-S CM-S0050).

- The main requirements were:
 - Enable a wider range of applications
 - IOT, flight connectivity, Consumer broadband, maritime, IP trunking.
 - Evolution, not revolution
 - Technical requirements:
 - high illumination ratios (period on vs off), single or multiple carriers per beam, low power, low latency, GEO, MEO, LEO…
 - Interoperability between equipment providers and service providers
 - Holistic approach
 - updating linked standards where appropriate: SI, GSE, RCS
DVB-TM-S and Beam-Hopping

- In June 2018 DVB-TM-S, under the chairmanship of Alberto Morello, was mandated to work on the new standard
- Over to Nader…
2. Beam Hopping Definitions
Basic Definitions

- A **Beam** is a directional Radio Signal Transmitted from a Satellite **Transmission Channel** towards a **Cell**

- At any given time only one **Cell** within a **Cluster** is illuminated.

- A **Transmission Channel** is serving one **Cluster**

- The **Beam Hopping Time Plan** determines cell **dwell times** and the **BH Cycle** within a cluster.
Beam Hopping Concept

- Satellite Gateway to User Terminal Forward Link:
 - **Time-multiplexing** data traffic of multiple cells within each Cluster
 - Typically a **Wideband Transmission**
 - A satellite beam switching (hopping) to different Cells

- Reconfigure according to changing traffic demands and user locations

- Applicable also to the Return Link
R&D Activities

Proof of Concept:
- Beam Hopping Emulator for Satellite Systems:
 https://artes.esa.int/projects/behop

System Studies:
- Beam Hopping Techniques in Multi-Beam Satellite Systems
 https://artes.esa.int/projectsbeam-hopping-techniques-muti-beam-satellite-systems-eads-astrium
 https://artes.esa.int/projectsbeam-hopping-techniques-multibeam-satellite-systems-indra-espacio
Expected Benefits

- Capacity increase by up to +15%
- Reduction of the unmet and excess capacity by 20%
- Better flexibility in allocating capacity to the beams with variable traffic demand
- Lower DC power consumption
Air Interface Technical Overview

A sketch of the Physical Layer Changes:

1. Before each burst, introduce a **TRAINING SEQUENCE** (Preamble) to allow receiver synchronization:

2. Between bursts, introduce a **IDLE-SEQUENCE** to allow satellite beam switching: Postamble
A Generic Beam Hopping Model

A beam hopping transmission channel may switch:

- the carrier frequency,
- carrier bandwidth and
- number of carriers (per cell)
3. Beam Hopping System Scenarios
Satellite systems:
- Multi-beam GEO satellites (HTS, VHTS)
- Medium Earth Orbit Satellites
- Low Earth Orbit constellations

Potential applications:
- Broadband bi-directional traffic (B2B, B2C)
- Maritime, Airborne In-Flight Communications
- VoIP (low delay and jitter),
- IoT (low power consumption of user terminal)
Beam Hopping Operation Strategies

Prescheduled BH cycles:
Regular and periodic illumination pattern

Traffic Driven BH:
Non-periodic illumination pattern (Beam Hopping Time Plan), driven by traffic profile.
Traffic Driven Beam Hopping

Point and Shoot
Every packet to a user is directly transmitted

Quality of Service
More Flexibility to minimize Scheduling Delay (higher QoS)

Fixed Container Strategy
Fixed size transmission packet. Transmitted when filled up.

Non-Periodic Beam Hopping
Beam Hopping Channel Model

Performance Evaluation:
- Acquisition Mode
- Tracking Mode

Performance Metrics:

Acquisition Modes
- Mean Acquisition Time
- Estimation Statistics of Sync. Parameters

Tracking Mode
- Frame Error Ratio
- Header Decoding Ratio

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Acquisition</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency Offset</td>
<td>340 kHz</td>
<td>[1 kHz +1kHz]</td>
</tr>
<tr>
<td>Carrier Symbol Rates</td>
<td>57.526 MBaud</td>
<td>57.526 MBaud</td>
</tr>
<tr>
<td>Symbol Rate Offset</td>
<td>15 ppm</td>
<td>1 ppm</td>
</tr>
<tr>
<td>Timing Offset</td>
<td>Uniformly distributed in [-Ts/4 +Ts/4]</td>
<td>Uniformly distributed in [-Ts/4 +Ts/4]</td>
</tr>
<tr>
<td>Initial Phase Offset</td>
<td>Uniformly distributed in [-π +π] interval</td>
<td>Uniformly distributed in [-π +π] interval</td>
</tr>
<tr>
<td>SNIR</td>
<td>-9.5 dB</td>
<td>-9.5 dB, 0 dB, 10 dB</td>
</tr>
</tbody>
</table>
4. General description of new Formats for Beam hopping
DVB-S2X Waveforms for Beam Hopping Support

• Based on Annex E superframes
 ▪ Supports multibeam operation and future waveforms
 ▪ Variable superframe length to provide required granularity for beam-hopping operation
• Format 5: Periodic BH and VLSNR
 ▪ Strong preamble and header protection for cold acquisition and operation at SNR>-10dB
 ▪ Enable fragmentation of frames
• Format 6: Traffic Driven BH and VLSNR
 ▪ Long preamble to strengthen acquisition
 ▪ Protection Level Indicator (PLI) to enable VLSNR support
 ▪ No Fragmentation
• Format 7: Traffic driven, SNR>-3dB
 ▪ Reduced overhead for higher SNR scenarios

Approved by DVB
October 2019
Annex E Superframe - Concept

- WH coded SOSF and Pilots – Ref Scrambler
 - Identify and estimate adjacent cell interference
- Fragmentation enabled by SFH pointer
- VLSNR Support by
 - VLSNR modcods
 - variable header Protection Level by an Indicator (PLI)

Superframe Length = 612540 symbols

Payload (90 symbols)
Pilot group (36 symbols)

SOSF: Start of Super-Frame
SFFI: Super-Frame Format Indication
SFH: Superframe Header
PLH: Physical Layer frame Header
DVB-S2X Waveforms for Beam Hopping Support
New Annex E Superframe Formats

Format 5
Periodic BH
VLSNR

Format 6
Traffic Driven BH
VLSNR

Format 7
Traffic Driven

SOSF: Start of Super-Frame
SFFI: Super-Frame Format Indication
SFH: Superframe Header
EHF: Extended Header Field
PLI: Protection Level Indication
PA-Seq: Postamble sequence

Beam Switching time

Superframe Length = SFL symbols

Payload CU (90 symbols)
Pilot group (36 symbols)
Superframe Format 5 – Operation Cases
Full Flexibility to the System Designer

Single superframe
All terminals on a similar SNR level

Multiple Superframes
Terminals of different SNR levels

Very short dwells
Frame carried among hops

Multi Carrier operation
Variable superframe length per carrier
Grid Operation

- Hops take place only at an integer multiple of a basic time unit (the grid points)
- Advantages:
 - Ensure alignment of SF among beams
 - Reduces burst acquisition and time and increases acquisition reliability
- Disadvantages
 - Reduces flexibility in the choice of dwell time per cell
5. Simulation and Analysis
Purpose of Analysis and Simulation

Burst Reception Performance

• Robust cold acquisition
 ▪ Detection of the signal at SNR > -10dB
 ▪ Short acquisition time
 ▪ Essential estimation of timing, frequency, phase and SNR

• Robust cycle time learning (for the case of periodic beam hopping)

• Correct header decoding at SNR > -10dB

• Minimal degradation in performance
 ▪ FER at tracking mode
Burst Acquisition - Results

- False Alarm and detection rates < 10^{-6}
- Acquisition within a single hop time
- Parameter Estimation:
 - Time: 0.06 symbol time
 - Frequency: 10^{-5} symbol rate
 - SNR: 0.7 dB
Information Detection- Results

SFH Detection (Format 5): WER<10^{-7}

SNR degradation 0.07dB at VLSNR
Reference to continuous case

PLI Detection (Format 6): WER<10^{-7}

SNR degradation 0.02dB at High SNR
Reference to continuous case
6. Maintenance, further work and closing remarks
The DVB-TM-S also took the opportunity to solve some problems which had been observed in the DVB-S2X:

- Co-existence of VLSNR frames with standard S2X frames.
 - Problem: Instability in transition zone between VLSNR and S2X MODCODs
 - Solution: Dummy Synchronisation Frame
 - Same correlation structure as per new annex-E format 6.
 - VLSNR frames can now coexist in the same carrier as S2X frames thanks to DSF.
Continuity

- Alberto Morello retired from DVB-TM-S in December 2019
- Replaced by Vittoria Mignone (welcome).
 - The work continues
Further work

- Updating linked standards.
 - RCS, GSE, SI tables
 - To support Beam-Hopping
- V&V: Verification and Validation
 - Test patterns
 - Common models
 - File exchange
 - Text based
 - Human and machine readable
Concluding remarks

• The DVB-S standard now includes Beam-Hopping

 ▪ **All of the commercial requirements for Beam-Hopping have been met.**

• This has been an excellent cooperation between multiple companies and institutions. We can be confident that we have a standard that is robust, forward looking and well maintained.
Questions and Answers